Cho các số thực x, y dương thỏa mãn x + \(\dfrac{1}{y}\) \(\le\) 1; Tìm giá trị nhỏ nhất của biểu thức:
P = \(\dfrac{x^2-2xy+2y^2}{x^2+xy}\)
Cho x,y là số thực dương thỏa mãn:x+y\(\le1\)
Tìm giá trị nhỏ nhất của biểu thức:A=\(\dfrac{1}{x^2+y^2}+\dfrac{4}{xy}+8xy\)
1, cho x,y là các số thực dương thỏa mãn điều kiện:x+y≤1. Tìm giá trị nhỏ nhất của biểu thức: K=\(4xy+\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}\)
cho các số thực dương x,y thỏa mãn \(x+\dfrac{1}{y}\le1\) tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
cho ba số thực dương x,y,z thỏa mãn điều kiện x2≥y+z .Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{1}{x^2}\left(y^2+z^2\right)+\dfrac{7x^2}{2}\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2007\)
Cho 2 số thực x, y thỏa mãn x ≥ 3, y ≥ 3. Tính giá trị nhỏ nhất của biểu thức T = 21( x + \(\dfrac{1}{y}\) ) + 3( y + \(\dfrac{1}{x}\) )
cho x;y là 2 số dương thay dổi. Tìm giá trị nhỏ nhất của biểu thức :
S = \(\dfrac{x+y^2}{x^2+y^2}+\dfrac{x+y^2}{xy}\)
cho x;y là 2 số dương thay dổi. Tìm giá trị nhỏ nhất của biểu thức :
S = \(\dfrac{x+y^2}{x^2+y^2}+\dfrac{x+y^2}{xy}\)
Tìm tập giá trị của hàm số: \(y=\sqrt{1+\sin\left(x-\dfrac{\pi}{5}\right)}-3\)
tìm giá trị nhỏ nhất của biểu thức
\(A=x+\dfrac{9}{x-1}+3\) với x>1