\(A=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)
Vậy GTNN của A là 3 khi \(\begin{cases}x-2\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge2\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le5\)
Áp dụng tính chất: |a|+|b| >=|a+b| ta có:
|x-2|+|5-x|>=|x-2+5-x|=|3|=3
=>A>=3
Dấu bằng xảy ra khi: -5<=x<=2
Vậy giá trị nhỏ nhất của A là:3
>= là lớn hơn hoặc bằng: <= là bé hơn hoặc bằng
Chúc bạn học tốt
Ta có :\(A=|x-2|+|5-x\ge|x+2+5-x|=7\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x+2\right).\left(5-x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(x+2\right)\ge0\\\left(5-x\right)\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(x+2\right)\le0\\\left(5-x\right)\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-2\\x\le5\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-2\\x\ge5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-2\le x\le5\)
Vậy giá trị nhỏ nhất của A = 7 \(\Leftrightarrow-2\le x\le5\)
chúc bạn hc tốt