Lời giải:
a)
Ta có \(x(x+1)+5=x^2+x+5=\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\geq 0\forall x\in\mathbb{R}\Rightarrow x(x+1)+5\geq 0+\frac{19}{4}=\frac{19}{4}\)
Do đó \((x^2+x+5)_{\min}=\frac{19}{4}\Leftrightarrow x=\frac{-1}{2}\)
b)
\(M=a^2+ab+b^2-3a-3b+2013\)
\(\Rightarrow 2M=2a^2+2ab+2b^2-6a-6b+4026\)
\(\Leftrightarrow 2M=(a+b-2)^2+(a-1)^2+(b-1)^2+4020\)
Thấy \(\left\{\begin{matrix} (a+b-2)^2\geq 0\\ (a-1)^2\geq 0\\ (b-1)^2\geq 0\end{matrix}\right.\Rightarrow 2M\geq 4020\Rightarrow M\geq 2010\)
Vậy \(M_{\min}=2010\Leftrightarrow a=b=1\)