Ta có :
\(\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\\ \Rightarrow A\ge8\\ \)
⇒MinA = 8 xảy ra tại \(\left\{{}\begin{matrix}x\cdot\left(8-x\right)\ge0\\x=5\end{matrix}\right.\)
Ta có :
\(\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\\ \Rightarrow A\ge8\\ \)
⇒MinA = 8 xảy ra tại \(\left\{{}\begin{matrix}x\cdot\left(8-x\right)\ge0\\x=5\end{matrix}\right.\)
a) Cho biểu thức A=\(\dfrac{2008-x}{8-x}\) Tìm giá trị nguyên của x để A đạt giá trị lớn nhất . Tìm giá trị đó
b)Tìm giá trị nhỏ nhất của biểu thức : P=I2013-xI+I2014-xI
a) Cho biểu thức A=\(\dfrac{2008-x}{8-x}\) Tìm giá trị nguyên của x để A đạt giá trị lớn nhất . Tìm giá trị đó
b)Tìm giá trị nhỏ nhất của biểu thức : P=I2013-xI+I2014-xI
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Bài 8 :
1 . Tìm giá trị lớn nhất của các biểu thức .
a. B = - ( x + 18/1273 ) - 183/124 .
b. C = 15/( x - 8)² + 4 .
2 . Tìm các giá trị của x để các biểu thức sau nhận giá trị dương .
a. A = x² + 6 .
b. B = ( 5 - x ) . ( x + 8 ) .
c. C = ( x - 1 ) . ( x - 2 ) / x - 3 .
tìm \(x\in Z\) để các biểu thức sau có giá trị lớn nhất và có giá trị nhỏ nhất :
1)A = \(\dfrac{1}{7-x}\) 2) B = \(\dfrac{8-x}{x-3}\)
3) C = \(\dfrac{27-2x}{12-x}\)
Tìm giá trị nhỏ nhất của biểu thức: A = \(\dfrac{x^2+1}{x^2+3}\)
Tìm giá trị nhỏ nhất của biểu thức: P=\(\dfrac{14-x}{4-x}\)(x∈Z). Khi đó, x nhận giá trị nguyên nào
Tìm giá trị nhỏ nhất của biểu thức sau H =|x-3|+|4+x|
tìm giá trị nhỏ nhất của biểu thức: |2x - 9|+|x - 7|+|x - 3|
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau :
a) \(A=\left|x-2017\right|+\left|x-2018\right|\)
b) \(B=\dfrac{x^2+12}{x^2+4}\)