Lời giải:
ĐK: \(a,b>0\)
Ta có: \(B=\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{ab}{a}+\frac{ab}{b}+\frac{2}{a+b}=b+a+\frac{2}{a+b}\)
\(=\frac{a+b}{2}+\frac{a+b}{2}+\frac{2}{a+b}\geq 3\sqrt[3]{\frac{a+b}{2}.\frac{a+b}{2}.\frac{2}{a+b}}=3\sqrt[3]{\frac{a+b}{2}}\) (theo BĐT Cô-si)
Mà cũng theo BĐT Cô-si : \(a+b\geq 2\sqrt{ab}=2\)
\(\Rightarrow B\geq 3\sqrt[3]{\frac{a+b}{2}}\geq 3\sqrt[3]{\frac{2}{2}}=3\)
Vậy \(B_{\min}=3\Leftrightarrow a=b=1\)