\(GT\Rightarrow a+b=5\)
\(P=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}=\dfrac{4}{5}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{5}{2}\)
\(GT\Rightarrow a+b=5\)
\(P=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}=\dfrac{4}{5}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{5}{2}\)
cho 2 số thưc dương a,b sao cho 9a\(^2\)+4b\(^2\)=9
tìm giá tri nhỏ nhất của A = (1+a)(1+\(\dfrac{3}{2b}\))+ (1+\(\dfrac{2b}{3}\))(1+\(\dfrac{1}{a}\))
cho a,b là 2 số thực dương sao cho a - \(\sqrt{a}\)= \(\sqrt{b}\) -b
tìm giá trị nhỏ nhất của P= \(a^2\)+ \(b^2\) + \(\dfrac{2020}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)
Cho các số thực dương a,b,c thõa mãn a+b+c=6. Tìm giá trị nhỏ nhất của biểu thức
P = \(\sqrt{a^2+\dfrac{1}{a+b}}+\sqrt{b^2+\dfrac{1}{b+c}}+\sqrt{c^2+\dfrac{1}{c+a}}\)
Cho biểu thức sau:\(B=\dfrac{\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}}{\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x+1}}}\)
A)Tìm ĐKXĐ của B và thu gọn B
B)Tại \(x=\dfrac{a^2+b^2}{2ab}\left(a>b>0\right)\),tính giá trị của B theo a,b
C)Tìm tất cả các giá trị của x để B≤1
D)Tìm tất cả các giá trị của x để B=2
Bài 8:Cho A=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)và B=\(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-\dfrac{5}{1-\sqrt{x}}+\dfrac{4}{x-1}\)(x≥0;x≠1)
a)Tính giá trị của A khi x=\(4+2\sqrt{3}\)
b)Rút gọn B
c)Tìm x để P=A.B có giá trị nguyên
Cho biểu thức: A =\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)và B=\(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-\dfrac{4}{1-\sqrt{x}}+\dfrac{5-x}{x-1}\)
a) Tìm điều kiện của x để A và B đều có nghĩa
b) Tính giá trị của A khi x = 9
c) Rút gọn biểu thức P = A.B
Cho hai biểu thức:
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\); \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\) với \(x\ge0,x\ne4,x\ne9\)
a) Tính giá trị của A khi \(x=\dfrac{1}{4}\)
b) Rút gọn B.
c) Tìm giá trị nguyên của x để B nhận giá trị là số tự nhiên.
cho hai biểu thức
A=\(\dfrac{\sqrt{x}}{\sqrt{x}+5}\) và B = \(\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{2-5\sqrt{x}}{4-x}\) (\(x\ge0;x\ne4\))
a, tìm giá trị của A khi x = 25
b, rút gọn biểu thức B
c, tìm số tự nhiên x để \(\dfrac{B}{A}\le\dfrac{1}{3}\)
Cho các số dương a, b, c thoả mãn: \(a+b+c=2019\). Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)