Ta có : \(A=\left(x+z\right)\left(y+t\right)=xy+xt+yz+zt\)
Lại có : \(xy\le\frac{x^2+y^2}{2}\) , \(xt\le\frac{x^2+t^2}{2}\) , \(yz\le\frac{y^2+z^2}{2}\) , \(zt\le\frac{z^2+t^2}{2}\)
Suy ra : \(xy+xt+yz+zt\le\frac{x^2+y^2+x^2+t^2+y^2+z^2+z^2+t^2}{2}=\frac{2\left(x^2+y^2+z^2+t^2\right)}{2}=1\)
\(\Rightarrow A\le1\)
Vậy Max A = 1 \(\Leftrightarrow x=y=z=t=\frac{1}{2}\)