A=\(\dfrac{x^2-2x+2018}{x^2}=1-\dfrac{2}{x}+\dfrac{2018}{x^2}
\)
Đặt \(\dfrac{1}{x}=t\) Ta có
A=2018\(t^2\)-2t+1=2018\(\left(t^2-2t.\dfrac{1}{2018}+\dfrac{1}{2018}\right)\)-\(\dfrac{1}{2018}\)+1
A=\(2018\left(t-\dfrac{1}{2018}\right)^2+\dfrac{2017}{2018}\)\(\ge\dfrac{2017}{2018}\forall t\)
Vậy min A=\(\dfrac{2017}{2018}\Leftrightarrow t=\dfrac{1}{2018}hay\) x=2018