Tìm giá trị nhỏ nhất của :
G = \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-2021\right|\)
Tìm x:
\(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x-9=5\right|\)
\(\left|x-2\right|+\left|x-3\right|+\left|2x-8\right|=9\\ \left|x+2\right|+\left|x+3\right|+\left|x+1\right|=4\\ \left|x+\dfrac{1}{1.5}\right|+\left|x+\dfrac{1}{5.9}\right|+\left|x+\dfrac{1}{9.13}\right|+...+\left|x+\dfrac{1}{397.401}\right|=101x\)
1. Tìm x, biết:
a) \(\left|x-1\right|+\left|x-4\right|=5\)
b) \(3\left|x+4\right|+\left|x-5\right|=10\)
c) \(\left|x+3\right|+\left|2x+1\right|=3x-6-\left|x+1\right|\)
d) \(\left|x\right|-\left|2x+3\right|=\left|x-1\right|\)
e) \(\left|x+1\right|+\left|2x-3\right|=\left|3x-2\right|\)
f) \(\left|x+2\right|+\left|x+\dfrac{3}{5}\right|=10x-\left|x+\dfrac{1}{2}\right|\)
g) \(\left|x+3\right|+\left|x+1\right|=3x\)
h) \(\left|x-1\right|+\left|x-3\right|< x+1\)
i) \(\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+...+\left|x+\dfrac{1}{97.99}\right|=50x\)
j) \(\left|3x-5\right|+\left|3x+1\right|=6\)
(Ai làm đc bài nào thì làm nha)
Rút gọn biểu thức:
\(a,\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(b,\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(c,\left(a+b\right)^2-\left(a-b\right)^2\)
1. Cho biểu thức:\(A=2x^2-5x-5\)
Tính giá trị của biểu thức \(x=-2,x=\dfrac{1}{2}\)
2.Cho biểu thức:\(D=\left(x^2-1\right).\left(x^2-2\right).\left(x^2-3\right).....\left(x^2-2015\right)\)
Tính giá trị biểu thức D tại \(x=\left(x^2+2010\right).\left(x-10\right)=0\)
3.Tìm giá trị nhỏ nhất của biểu thức:
\(a.A=\left(x-3\right)^2+9\)
b.\(\left(x-1\right)+\left(y+2\right)^2+10\)
c.\(\text{|}x-1\text{|}+\left(2y-1\right)^4+1\)
4.Tính giá trị lớn nhất của biểu thức:
a.\(P=-2.\left(x-3\right)^2+5\)
b.\(Q=\dfrac{5}{\left(x-14\right)^2+21}\)
5.Tìm x thuộc Z để \(A=\dfrac{x-5}{x-3}\) thuộc Z
Tìm \(x,\) biết:
a) \(4\left|3x-1\right|+\left|x\right|-2\left|x-5\right|+7\left|x-3\right|=12\)
b) \(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x+9\right|=5\)
c) \( \left|2\frac{1}{5}-x\right|+\left|x-\frac{1}{5}\right|+8\frac{1}{5}=1,2\)
d) \(2\left|x+3\frac{1}{2}\right|+\left|x\right|-3\frac{1}{2}=\left|2\frac{1}{5}-x\right|\)
chứng minh rằng giá trị của các biểu thức sau ko phụ thuộc vào biến
a, \(x^2-2x-\left(3x^2-5x+4\right)+\left(2x^2-3x+7\right)\)
b,\(\left(2x^3-4x^2+x-1\right)-\left(5-x^2+2x^3\right)+3x^2-x\)
c, \(\left(1-x-\dfrac{3}{5}x^2\right)-\left(x^4-2x-6\right)+0,6x^2+x^4-x\)
Rút gọn biểu thức:
a, \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(2x-1\right)\)
\(b,\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x-1\right)\left(x+1\right)\)
thực hiện phép tính
a.\(5x^2-3x\left(x+2\right)\)
b.\(3x\left(x-5\right)-5x\left(x+7\right)\)
c.\(3x^2y.\left(2x^2-y\right)-2x^2.\left(2x^2y-y^2\right)\)
d.\(3x^2.\left(2y-1\right)-\left[2x^2.\left(5y-3\right)-2x.\left(x-1\right)\right]\)
e.\(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)
f.\(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)