Tìm giá trị nguyên của x để M=\(x^4+\left(x+1\right)^3-2x^2-2x\) là số chính phương
Tìm các giá trị nguyên của x để M=\(x^4+\left(x+1\right)^3-2x^2-2x\) là số chính phương.
Cho biểu thức \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) với \(x\ge0;x\ne1\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị là số nguyên
Cho đa thức: \(f\left(x\right)=x^2-\left(m+2\right)x+2m+7\) (m là tham số). Hãy tìm các giá trị nguyên của m để đa thức f(x) có 2 nghiệm nguyên phân biệt
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
tìm m để phương trình \(\dfrac{x^2-2x+1}{x^2+4x+4}-m\left|\dfrac{x+2}{x-1}\right|=12\) có đúng 4 nghiệm
Tìm các giá trị a,b,c để:
a) \(x^4-2x^3+2x^2-2x+a=\left(x^2-2x+1\right)\left(x^2+bx+c\right)\)
b) \(x^3+3x^2-x-3=\left(x-2\right)\left(x^2+bx+c\right)+a\)
Cho hệ pt : \(\left\{{}\begin{matrix}mx+3y=4\\2x-my=-3\end{matrix}\right.\)
a) Tìm m để HPT có vô số nghiệm
b) Với giá trị nào của m thì nghiệm của HPT thỏa mãn x<0 và y>0
Cho hệ phương trình \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\left(I\right)\) (m là tham số) .
a) Giải hệ phương trình (I) khi m=1.
b) Tìm m để hệ (I) có nghiệm duy nhất (x,y) thỏa mãn x+y=-3.