Có bao nhiêu giá trị nguyên của tham số m để phương trình 4x -m.2x+1 + (2m2 + 5) = 0 có 2 nghiệm nguyên phân biệt?
A. 1 B. 5 C.2 D.4
tìm giá trị m để phương trình 22|x-1| +1 + 2 |x-1| +m=0 có nghiệm duy nhất
Tìm m để \(\sqrt{\left(2-\sqrt{3}\right)^x}+m\sqrt{\left(2+\sqrt{3}\right)^x}=4\) có 2 nghiệm x1,x2 sao cho x1-x2=\(\log_{2+\sqrt{3}}3\)
Chứng minh \(2017^{x^3}+2017^{\dfrac{1}{x^5}}>2018\)với mọi x>0
Tìm m để PT \(\left(m^2-1\right)\log_{\dfrac{1}{2}}^2\left(x^4-2\right)^2+4\left(m-5\right)\log_{\dfrac{1}{2}}\dfrac{1}{x-2}+4m-4=0\)
có nghiệm thuộc \(\left[\dfrac{5}{2};4\right]\)
Gọi S là tập tất cả các giá trị nguyên của tham số m để phương trình 4x -m.2x + (10-m) =0 có hai nghiệm phân biệt. Tính tổng giá trị các phần tử của S.
A.45 B.42 C.35 D.52
xác định m để hàm số:
a. y=x3-3(2m+1)x2+(12m+5)x+2 đồng biến trên tập xác định
b. y=mx3-(2m-1)x2+(m-2)x-2 đồng biến trên tập xác định
c. y=\(\dfrac{-1}{3}mx^3+mx^2-x+3\) nghịch biến trên tập xác định
d. y=\(\dfrac{x^2+mx-5}{3-x}\) nghịch biến trên từng khoảng xác định
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y=log3(x3 - mx + 1) xác định trên khoảng (1;+∞)
A. 2
B.1
C.3
D. Vô số
chứng minh hàm số y=\(\dfrac{1}{3}x^3-mx^2-\left(2m+3\right)x+9\) luôn có cực trị với mọi giá trị của hàm số m
số nghiệm của pt 3^x=căn của(8x^2+1)
Định m để hàm số:
a. y=x3 -3(2m+1)x2 +(12m+5)x+2 đồng biến trên tập xác định
b. y=mx3 -(2m-1)x2 +(m-2)x-2 đồng biến trên tập xác định