\(A=x^2-10x+5\\ A=x^2-10x+25-20\\ A=\left(x-5\right)^2-20\)
Có \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow A=\left(x-5\right)^2-20\ge-20\forall x\)
Vậy \(min_A=-20\)
\("="\Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)