Ta có: A = 8x - 2x2 - 5 = -2(x2 - 4x + 4) + 3 = -2(x - 2)2 + 3 \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MaxA = 3 khi x = 2
Ta có: A = 8x - 2x2 - 5 = -2(x2 - 4x + 4) + 3 = -2(x - 2)2 + 3 \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MaxA = 3 khi x = 2
Tìm tập xác định của biểu thức, rút gọn biểu thức, rồi tính giá trị của biểu thức với x = \(\dfrac{1}{3}\) , y = -2:
[\(\dfrac{2x}{2x-3y}\) - \(\dfrac{9y^2\left(3y+4x\right)}{8x^3-37y^3}\) - \(\dfrac{24xy}{4x^2+6xy+9y^2}\)][2x + \(\dfrac{3y\left(3y+4x\right)}{2x-3y}\)]
Tìm giá trị của m để biểu thức A=m mũ 2-2m-5 đạt giá trị nhỏ nhất . Tính giá trị nhỏ nhất đó
1. Cho phân thức 2x^2 - 4x 8/x^3 8a) Với điều kiện nào của x thì giá trị của phân thức được xác định.b) Hãy rút gọn phân thức c) Tính giá trị của phân thức tại x=2d) Tìm giá trị của x để giá trị của phân thức bằng 2
Tìm giá trị lớn nhất của biểu thức
\(A=\frac{2x^2-4x+7}{x^2-2x+2}\)
Cho biểu thức:
\(A=\left(1-\dfrac{\sqrt{x}}{\sqrt{x+1}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x+6}}\right)\)
a) Rút gọn A
b) Tìm x để A<0
c) Tìm giá trị nhỏ nhất của A
d) Tính giá trị nguyên của x để A nhận giá trị nguyên
1. Cho m<n, hãy so sánh -7m+10 với 7n+10
2. Giải BPT và biểu diễn tập ngiệm trên trục số
a) -4x+8≥0
b) 5+2x<0
3. Tìm x sao cho
a) Giá trị của biểu thức 3x+2 lớn hơn giá trị của biểu thức 2(1-2x)
b) Giá trị của biểu thức x-3 không lớn hơn giá trị của biểu thức \(\frac{6-2x}{5}\)
4. Giải BPT: |-3x|= x+6
1. Tìm giá trị lớn nhất của A=2x-3x2+4
2. Giải phương trình 2|x|-2=|x-1|
3. Tìm các giá trị của x sao cho biểu thức \(\dfrac{7}{5}\) > \(\dfrac{x+1}{5}-\dfrac{x-2}{3}\) > 1
4. Tìm số tự nhiên x thỏa mãn ( x+2 )2 - ( n-3 )( n+3 ) \(\le\) 40
Cho hệ ptrình với tham số m,
\(\hept{\begin{cases}x+y=3m+2\\3x-2y=11-m\end{cases}}\)
a,Giải hệ ptrình đã cho
b,Tìm m để \(x^2\)-\(y^2\)đạt giá trị lớn nhất