\(M=\left(2x-1\right)^2-3\left|2x-1\right|+2\)
+Có: \(\left(2x-1\right)^2\ge0với\forall x\)
\(\left|2x-1\right|\ge0với\forall x\)
\(\Rightarrow\left(2x-1\right)^2-3\left|2x-1\right|+2\ge2\)
\(\Leftrightarrow M\ge2\)
+Dấu "=" xảy ra khi \(\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\); \(\left|2x-1\right|=0\\ \Leftrightarrow x=\frac{1}{2}\)
+Vậy \(M_{min}=2khix=\frac{1}{2}\)
\(M=\left(\left|2x-1\right|-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
\(M_{min}=-\frac{1}{4}\) khi \(\left|2x-1\right|=\frac{3}{2}\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{4}\\x=-\frac{1}{4}\end{matrix}\right.\)