Hàm số \(y=\left(m-2\right)x+m^2-3\) cắt đồ thị tại điểm có hoành độ bằng 4
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
\(\Leftrightarrow0=4\left(m-2\right)+m^2-3\)
\(\Leftrightarrow m^2+4m-11=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{15}\\m=-2-\sqrt{15}\end{matrix}\right.\)
Đồ thị cắt trục hoành tại điểm có hoành độ bằng 4 => A(4;0)
thay A(4;0) vào hàm số ta có:
\(\left(m-2\right).4+m^2-3=0\)
\(\Leftrightarrow4m-8+m^2-3=0\\ \Leftrightarrow m^2+4m-11=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{15}\\m=-2-\sqrt{15}\end{matrix}\right.\)
Thay x=4 và y=0 vào hàm số, ta được:
\(4\left(m-2\right)+m^2-3=0\)
\(\Leftrightarrow m^2-3+4m-8=0\)
\(\Leftrightarrow m^2+4m-11=0\)
\(\text{Δ}=4^2-4\cdot1\cdot\left(-11\right)=60\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{-4-2\sqrt{15}}{2}=-2-\sqrt{15}\\m_2=\dfrac{-4+2\sqrt{15}}{2}=-2+\sqrt{15}\end{matrix}\right.\)