Hàm \(cos2x\) có chu kì \(T_1=\frac{2\pi}{\left|2\right|}=\pi\)
Hàm \(sin\left(\frac{x}{2}\right)\) có chu kì \(T_2=\frac{2\pi}{\left|\frac{1}{2}\right|}=4\pi\)
\(\Rightarrow\) Hàm y có chu kì \(T=BCNN\left(\pi;4\pi\right)=4\pi\)
Hàm \(cos2x\) có chu kì \(T_1=\frac{2\pi}{\left|2\right|}=\pi\)
Hàm \(sin\left(\frac{x}{2}\right)\) có chu kì \(T_2=\frac{2\pi}{\left|\frac{1}{2}\right|}=4\pi\)
\(\Rightarrow\) Hàm y có chu kì \(T=BCNN\left(\pi;4\pi\right)=4\pi\)
Tìm txđ của hàm số sau:
1.\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)
2.\(y=\dfrac{3}{sin^2x-cos^2x}\)
3.\(y=cos\left(x-\dfrac{\pi}{3}\right)+tan2x\)
Tìm GTNN và GTLN của hàm số sau:
1.\(y=cosx+cos\left(x-\dfrac{\pi}{3}\right)\)
2.\(y=sin^4x+cos^4x\)
3.\(y=3-2\left|sinx\right|\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số :
a) \(y=3-2\left|\sin x\right|\)
b) \(y=\cos x+\cos\left(x-\dfrac{\pi}{3}\right)\)
c) \(y=\cos^2x+2\cos2x\)
d) \(y=\sqrt{5-2\cos^2x\sin^2x}\)
Cho hàm số \(y=f\left(x\right)=\left|\sin x-\cos x\right|-\left|\sin x+\cos x\right|\) .Với mọi số nguyên dương n tính \(T=f\left(-\pi\right)+f\left(-\frac{\pi}{2}\right)+...+f\left(-\frac{\pi}{n}\right)+f\left(0\right)+f\left(\frac{\pi}{n}\right)+...+f\left(\frac{\pi}{2}\right)+f\left(\pi\right)\)
Tìm GTLN, GTNN của các hàm số :
a) \(y=sin\left(1-x^2\right)\)
b) \(y=cos\sqrt{2-x^2}\)
GPT
a) \(sin\left(2x+1\right)+cos\left(3x-1\right)=0\)
b) \(sin\left(2x-\frac{\pi}{6}\right)=-sin\left(x-\frac{\pi}{4}\right)\)
c) \(sin\left(3x+\frac{2\pi}{3}\right)+sin\left(x-\frac{7\pi}{5}\right)=0\)
d) \(cos\left(4x+\frac{\pi}{3}\right)+sin\left(x-\frac{\pi}{4}\right)=0\)
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1-\sin x}{1+\cos x}}\) ; b) y = \(\tan\left(2x+\frac{\pi}{3}\right)\).
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1-\sin x}{1+\cos x}}\) ; b) y = \(\tan\) \(\left(2x+\frac{\pi}{3}\right)\).
Cho hàm số y=\(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\) với x thuộc \(\left(\dfrac{\text{π}}{4};\dfrac{\text{π}}{2}\right)\). Tìm giá trị nhỏ nhất của hàm số