Ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}.\)
\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}.\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\) và \(x.y=300.\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\Rightarrow\left\{{}\begin{matrix}x=15k\\y=20k\\z=24k\end{matrix}\right.\)
Lại có: \(x.y=300\)
\(\Rightarrow15k.20k=300\)
\(\Rightarrow300.k^2=300\)
\(\Rightarrow k^2=300:300\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k^2=\left(\pm1\right)^2\)
\(\Rightarrow k=\pm1.\)
+ TH1: \(k=1.\)
\(\Rightarrow\left\{{}\begin{matrix}x=15.1=15\\y=20.1=20\\z=24.1=24\end{matrix}\right.\)
+ TH2: \(k=-1.\)
\(\Rightarrow\left\{{}\begin{matrix}x=15.\left(-1\right)=-15\\y=20.\left(-1\right)=-20\\z=24.\left(-1\right)=-24\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(15;20;24\right),\left(-15;-20;-24\right).\)
Chúc bạn học tốt!
Vì BCNN (4; 5) = 20
\(\Rightarrow\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{3.5}=\frac{y}{4.5}=\frac{x}{15}=\frac{y}{20}\)
\(\Rightarrow\frac{y}{5}=\frac{z}{6}\Leftrightarrow\frac{y}{5.4}=\frac{z}{6.4}=\frac{y}{20}=\frac{z}{24}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\Rightarrow\left\{{}\begin{matrix}x=15k\\y=20k\\z=24k\end{matrix}\right.\)
Thay \(x=15k,y=20k\) vào x . y = 300, có:
\(15k.20k=300\\ \Leftrightarrow300k^2=300\\ \Leftrightarrow k^2=1\\ \Rightarrow k\in\left\{1;-1\right\}\)
+ Khi \(k=1\Rightarrow\left\{{}\begin{matrix}x=1.15=15\\y=1.20=20\\z=1.24=24\end{matrix}\right.\)
+ Khi \(k=-1\Rightarrow\left\{{}\begin{matrix}x=-1.15=-15\\y=-1.20=-20\\z=-1.24=-24\end{matrix}\right.\)
Vậy...