Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trần Gia Huy

Tìm các số tự nhiên a; b thoả mãn điều kiện : 11/ 17 < a b < 23/ 29 và 8b-9a=31

Giải:

Ta biết: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và \(8b-9a=31\) \(\left(a;b\in N\right)\)

Theo đề bài: \(8b-9a=31\) 

\(\Rightarrow b=\dfrac{31+9a}{8}=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\in N\) 

\(\Leftrightarrow\dfrac{a-1}{8}\in N\) 

\(\Leftrightarrow\left(a-1\right)⋮8\) 

\(\Leftrightarrow a=8k+1\left(k\in N\right)\) 

Khi đó:

\(b=\dfrac{31+9.\left(8k+1\right)}{8}=9k+5\) 

\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\) 

\(\Leftrightarrow\left\{{}\begin{matrix}11.\left(9k+5\right)< 17.\left(8k+1\right)\Leftrightarrow k>1\\29.\left(8k+1\right)< 23.\left(9k+5\right)\Leftrightarrow k< 4\end{matrix}\right.\) 

\(\Rightarrow1< k< 4\)

\(\Rightarrow k\in\left\{2;3\right\}\) 

Với \(\left[{}\begin{matrix}k=2\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\\k=3\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\end{matrix}\right.\) 

Vậy \(\left(a;b\right)=\left(17;23\right);\left(25;32\right)\)

Phạm An Tường
13 tháng 2 2023 lúc 20:46

Giải:

Ta biết: 1117<��<2329 và 8�−9�=31 (�;�∈�)

Theo đề bài: 8�−9�=31 

⇒�=31+9�8=32−1+8�+�8=[(4+�)+�−18]∈� 

⇔�−18∈� 

⇔(�−1)⋮8 

⇔�=8�+1(�∈�) 

Khi đó:

�=31+9.(8�+1)8=9�+5 

⇒1117<8�+19�+5<2329 

⇔{11.(9�+5)<17.(8�+1)⇔�>129.(8�+1)<23.(9�+5)⇔�<4 

⇒1<�<4

⇒�∈{2;3} 

Với [�=2⇒{�=17�=23�=3⇒{�=25�=32 

Vậy (�;�)=(17;23);(25;32)


Các câu hỏi tương tự
Nguyễn Quỳnh Ngân
Xem chi tiết
Giang Phạm Gia
Xem chi tiết
Lê Minh Trang
Xem chi tiết
Hong Ngoc Khanh
Xem chi tiết
Nguyễn Linh
Xem chi tiết
dream XD
Xem chi tiết
Adorable Angel
Xem chi tiết
Lê Nguyễn Ngọc Nhi
Xem chi tiết
Xem chi tiết