\(2x+2y=1\Rightarrow y=\frac{1-2x}{2}\)
\(\Rightarrow3x^2+2\left(\frac{1-2x}{2}\right)^2=\frac{6}{35}\)
\(\Leftrightarrow5x^2-2x+\frac{23}{70}=0\)
\(\Leftrightarrow5\left(x-\frac{1}{5}\right)^2+\frac{9}{70}=0\) (vô nghiệm)
Vậy ko tồn tại x, y thỏa mãn đề bài
\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)
\(\Rightarrow3x^2+2\left(\frac{1-2x}{3}\right)^2=\frac{6}{35}\)
\(\Leftrightarrow\frac{35x^2}{9}-\frac{8x}{9}+\frac{16}{315}=0\)
\(\Leftrightarrow\frac{1}{315}\left(35x-4\right)^2=0\Rightarrow x=\frac{4}{35}\)
\(\Rightarrow y=\frac{9}{35}\)