(y+2)x2017-y(y+2)=1
=>(y+2)(x2017-y)=1
có x. y nguyên nên
y+2 nguyên
và x2017-y nguyên
mà (y+2)(x2017-y)=1
=>y+2=1
và x2007-y =1
giải 2 pt
=>y=-1 và x =0
(y+2)x2017-y(y+2)=1
=>(y+2)(x2017-y)=1
có x. y nguyên nên
y+2 nguyên
và x2017-y nguyên
mà (y+2)(x2017-y)=1
=>y+2=1
và x2007-y =1
giải 2 pt
=>y=-1 và x =0
Tìm các số nguyên dương x,y thoả mãn \(x^3-y^3=133\left(x^2+y^2\right)\)
Các bạn giải hết cho mình với nhé, mình cảm ơn nhiều<3
G.sử x, y là các số thực thoả mãn: \(\left(x+\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)=9\)
Tìm min: \(P=x^2+xy+y^2\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
a) tìm số tự nhiên x và số nguyên y thỏa mãn: \(x^2y+2xy+x^2-2018x+y=-1\)
b) giải hệ phương trình \(\left\{{}\begin{matrix}x^2-2y^2+xy=2y-2x\\\sqrt{x+2y+1}+\sqrt{x^2+y+2}=4\end{matrix}\right.\)
1Cho x,y,z >0 và xy+yz+zx=1. Chứng minh rằng \(3\left(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}+\dfrac{1}{z^2+1}\right)+\left(1+x^2^x\right)\left(1+y^2\right)\left(1+z^2\right)\ge\dfrac{985}{108}\) 2 Cho p,q là hai số nguyên tố thoả mãn \(p-1⋮p\) và \(p^3-1p⋮\) Chứng minh rằng p+q là số chính phương
Tìm các cặp số nguyên (x; y) thỏa mãn: \(\left|x^2-2x\right|-\dfrac{1}{2}< y< 2-\left|x-1\right|\)
Cho x, y, z là các số thực thoả mãn: \(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)
Tính: \(M=x^{10}+y^{100}+z^{1000}\)
Tìm x,y nguyên
\(\left(x+2\right)\left(x^{2017}-y^2-2y-1\right)=0\)
Tìm tât cả bộ các số x; y; z thoả:
\(\left\{{}\begin{matrix}x^2-2x=y\\y^2+2y=z\\x+y+z+1+\sqrt{x-1}=0\end{matrix}\right.\)