\(\dfrac{1}{2x}+\dfrac{1}{2y}+\dfrac{1}{xy}=\dfrac{1}{2}\)
\(\dfrac{y}{2xy}+\dfrac{x}{2xy}+\dfrac{2}{2xy}=\dfrac{xy}{2xy}\)
=> x + y + 2 = xy
x + y - xy = -2
x.( 1 - y ) + y = -2
x.( 1 - y ) - ( 1 - y ) = -2 - 1
( 1 - y ).( x - 1 ) = -3
- ( y - 1 ).( x - 1) = -3
=> ( y - 1 ).( x - 1 ) = 3
=> ( y - 1 ) ; ( x - 1 ) \(\in\) Ư( 3 ) = { 1; -1; 3; -3 }
Ta có bảng sau
y - 1 | 1 | -1 | 3 | -3 |
y | 2 | 0 | 4 | -2 |
x - 1 | 3 | -3 | 1 | -1 |
x | 4 | -2 | 2 | 0 |
Vậy ( x ; y ) \(\in\) { ( 4 ; 2 ); ( -2 ; 0 ); ( 2; 4 ); ( 0; -2 ) }