\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y+1\right)=12\)
+ \(\left(x-y-1\right)+\left(x+y+1\right)=2x⋮2\)
=> \(x-y-1\) và \(x+y+1\) cùng tính chẵn lẻ
\(\left\{{}\begin{matrix}x-y-1< x+y+1\\x+y+1\ge3\end{matrix}\right.\) ( do x,y nguyên dương ) và
\(x-y-1\), \(x+y+1\) cùng tính chẵn lẻ nên chỉ xảy ra TH
+ \(\left\{{}\begin{matrix}x-y-1=2\\x+y+1=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-y=3\\x+y=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\) ( TM )