\(\frac{n-17}{n-23}=k^2\Leftrightarrow n-17=k^2n-23k^2\)
\(\Leftrightarrow n\left(k^2-1\right)=23k^2-17\Leftrightarrow n=\frac{23k^2-17}{k^2-1}=23+\frac{6}{k^2-1}\)
\(\Rightarrow k^2-1=Ư\left(6\right)=\left\{-1;1;2;3;6\right\}\)
\(k^2-1=-1\Rightarrow k^2=0\Rightarrow n=17\)
\(k^2-1=1\Rightarrow k^2=2\) (ko tồn tại k hữu tỉ)
\(k^2-1=3\Rightarrow k^2=4\Rightarrow n=25\)
\(k^2-1=2\Rightarrow k^2=3\left(ktm\right)\)
\(k^2-1=6\Rightarrow k^2=7\left(ktm\right)\)
Vậy \(n=\left\{17;25\right\}\)
Bạn nên thêm các điều kiện mẫu khác 0 vào cho chặt chẽ hơn