\(\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{6-4\sqrt{2}}\)
\(=3+\sqrt{2}+\sqrt{4-4\sqrt{2}+2}\)
\(=3+\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+2-\sqrt{2}\)
\(=5\)
\(A=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{6-4\sqrt{2}}\)
= \(\left|3+\sqrt{2}\right|+\sqrt{4-2.2.\sqrt{2}+2}\)
= \(3+\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
= \(3+\sqrt{2}+\left|2-\sqrt{2}\right|\)
\(A=3+\sqrt{2}+2-\sqrt{2}\)
= 5