a)Cho a,b thuộc N* và b=a+1
Thu gọn biểu thức:
\(P=\sqrt{1+a^2+\frac{a^2}{b^2}}+\frac{a}{b}\)
b)Áp dụng:Tính giá trị biểu thức:
\(P=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
c)Tính tổng:
\(Q=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{2020^2}+\frac{1}{2021^2}}\)
1, rút gọn biểu thức:\(A=\sqrt{1+\frac{2}{3}}\sqrt{1+\frac{2}{4}}\sqrt{1+\frac{2}{5}}.....\sqrt{1+\frac{2}{2006}}\)
Thu gọn biểu thức:
\(E=\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
Rút gọn biểu thức:
\(a,\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(b,\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
giải phương trình: \(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x}\right)\)
Q= \(\frac{\sqrt{a}\left(1-a\right)^2}{1-a^2}:\left[\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)
a) Rút gọn biểu thức Q? b) Xét dấu of biểu thức P= a.(Q-\(\frac{1}{2}\))
Rút gọn biểu thức \(A=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{2}+2}{1-\sqrt{x}}\)
Bài 4: Cho biểu thức: D =\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a) Rút gọn biểu thức D.
b) Chứng minh răng: 0 <D< 2
Rút gọn biểu thức A = \(\frac{2a\sqrt{1+x^2}}{\sqrt{1+x^2-x}}\)
với x = \(\frac{1}{2}\left(\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}}\right)\)
Cho biểu thức \(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\right)\) với \(a>0;a\ne1\) .
a, Rút gọn biểu thức Q.
b, Tìm giá trị của a để Q > 2.