Câu b dễ hơn nên em xí trước. Nhưng em không chắc đâu:v
b) Xét số hạng tổng quát \(\frac{1}{\sqrt{x}+\sqrt{x+1}}=\frac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x}+\sqrt{x+1}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}=\sqrt{x+1}-\sqrt{x}\) với x >= 0
Áp dụng vào,ta có:
\(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2020}-\sqrt{2019}\)
\(=\sqrt{2020}-1\)
a) \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\frac{\sqrt{2}}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}=\frac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{9-3}=\frac{6\sqrt{2}}{6}=\sqrt{2}\)