\(\sqrt{2+\sqrt{2+...+\sqrt{2}}}< \sqrt{2+\sqrt{2+...+\sqrt{4}}}=2\)
Vậy \(\sqrt{2+...+\sqrt{2}}< 2\)
\(\sqrt{2+\sqrt{2+...+\sqrt{2}}}< \sqrt{2+\sqrt{2+...+\sqrt{4}}}=2\)
Vậy \(\sqrt{2+...+\sqrt{2}}< 2\)
giải phương trình
\(\text{x}^2-4=3\sqrt{\text{x}^3-4\text{x}}\)
\(9\text{x}+17=6\sqrt{8\text{x}-1}+4\sqrt{\text{x}+3}\)
\(\sqrt{2\text{x}-1}+\text{x}=\sqrt{\text{x}}+\sqrt{\text{x}^2-\text{x}+1}\)
\(2\sqrt{\text{x}^2-\text{x}+1}+\sqrt{\text{x}^2+\text{x}+1}=\sqrt{\text{x}^4+\text{x}^2+1}+2\)
Giải phương trình sau:
\(1,\sqrt{x-2}-\sqrt{x+1}=\sqrt{2\text{x}-1}-\sqrt{x+3}\)
\(2,x^2-6\text{x}+26=6\sqrt{2\text{x}+1}\)
\(3,\left(\sqrt{x+5}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+7\text{x}+10}\right)=3\)
4,\(\sqrt[3]{x-4}-\sqrt{9-x}=-1\)
5,\(\left(x+1\right)\sqrt{16\text{x}+17}=8\text{x}^2-15\text{x}-23\)
Giúp mình với ạ mình đang cần gấp <3
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(\sqrt{x}+\sqrt{3-2\text{x}}=\left(x^2-2\text{x}+2\right)\left(1+\sqrt{2-x}\right)\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
\(x^2+2\text{x}-2+\sqrt{2\text{x}-1}-\sqrt{5-x}\)
\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3\text{x}+5\right)}=4-2\text{x}\)
rút gọn
a) \(\frac{7\sqrt{2}+2\sqrt{7}}{\sqrt{14}}-\frac{5}{\sqrt{7}+\sqrt{5}}\)
b) \(\frac{\sqrt{2}\left(3+\sqrt{5}\right)}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{\sqrt{2}\left(3-\sqrt{5}\right)}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
c) \(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16\text{ }+8\sqrt{5}}\)
helppp mee
\(\text{Cho }a=\sqrt{3+2x}+\sqrt{3-2x}\)
\(\text{Tính }B=\frac{\sqrt{2-\sqrt{9-4x^2}}}{x}\)