Nếu \(x\ge5\Rightarrow A=3\left(2x-1\right)-\left(x-5\right)\)
\(\Leftrightarrow A=6x-3-x+5\)
\(\Leftrightarrow A=5x+2\)
Chọn đáp án 1 : 5x+2.
Nếu \(x\ge5\Rightarrow A=3\left(2x-1\right)-\left(x-5\right)\)
\(\Leftrightarrow A=6x-3-x+5\)
\(\Leftrightarrow A=5x+2\)
Chọn đáp án 1 : 5x+2.
Cho biểu thức
A=\(\left[\frac{3\left(x+2\right)}{2\left(x^3+x^2+x+1\right)}+\frac{2x^2-x-10}{2\left(x^3-x^2+x-1\right)}\right]:\left[\frac{5}{x^2+1}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x+1\right)}\right]\)
bài 5: cho biểu thức A=\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
a. Tìm điều kiện của biến x để giá trị của biểu thức A được xác định ?
b. Tìm giá trị của x để A=1;A=-3
bài 6:cho phân thức A=\(\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\left(x\ne5;x\ne-5\right)\)
a. Rút gọn A
b. cho A=-3. Tính giá trị của biểu thức 9x2-42x+49
Chứng minh biểu thức sau không phụ thuộc vào giá trị của biến :
\(A=x.\left(5x-3\right)-x^2.\left(x-1\right)+x.\left(x^2-6x\right)-10+3x+x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)
\(B=3.\left(2x-1\right)-5.\left(x-3\right)+6.\left(3x-4\right)-19x+x.\left(3x+12\right)-\left(7x-20\right)+x^2.\left(2x-3\right)-x.\left(2x^2+5\right)\)
CHo biểu thức: \(A=\left(\dfrac{x-2}{x+2}+\dfrac{x}{x-2}+\dfrac{2x+4}{4-x^2}\right).\left(x+\dfrac{5}{x-3}\right)\). Rút gọn A
Cho biểu thức: \(A=\left(\dfrac{x-2}{x+2}+\dfrac{x}{x-2}+\dfrac{2x+4}{4-x^2}\right).\left(x+\dfrac{5}{x-3}\right)\). Tìm x để A=4/5
a) rút gọn biểu thức: \(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
b) tìm x biết: \(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=12\)
Cho biểu thức sau :
B=\(\left[\left(x^4-x+\dfrac{x-3}{x^3+1}\right).\dfrac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\dfrac{2\left(x+6\right)}{x^2+1}\right].\dfrac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\) a, Tìm giá trị của x để giá trị của biểu thức B được xác định
b, Rút gọn B
c, Cmr với các giá trị của x mà giá trị của biểu thức xác định thì \(-5\le B\le0\)
a, Rút gọn biểu thức \(A=\dfrac{\sqrt{1-\sqrt{1-x^2}}\left(\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right)}{2-\sqrt{1-x^2}}\) với \(-1\le x\le1\)
b, Tính giá trị biểu thức Q = \(\dfrac{a^6-2a^5+a-2}{a^5+1}\)biết \(\dfrac{a}{x+y}=\dfrac{5}{x+z}\)và \(\dfrac{25}{\left(x+z\right)^2}=\dfrac{16}{\left(z-y\right)\left(2x+y-z\right)}\)
Giúp em với ạ
cho biểu thức sau: A\(\left(x-5\right)^2+\left(2x+1\right)^2-2\left(2x^2+8,5\right)\)
a) rút gọn biểu thúc a
b) tìm x để A=0
c)tìm x để A=36