Cho tam giác ABC vuông tại A, kẻ đường cao AH và phân giác BE (H thuộc BC, E thuộc AC) Kẻ AD vuông góc BE ( D thuộc BE)
a) CM ADHB nội tiếp trong 1 đường tròn. Xác định tâm O của đường tròn đó
b) CM ^EAD= ^HBDvà OD // HB
c) biết góc ABC=60 độ , và AB = a ( a>0) Tính theo a phần diện tích tam giác ABC nằm ngoài đường tròn O
Cho tam giác ABC vuông tại A đường cao AH biết AC =8 cm ,cos BAC=2/3 a/tính AB b/tính AH
Câu 4: Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH. 1. Cho AB = 4cm; AC = 3cm. Tính độ dài các đoạn thẳng BC, AH. 2. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (C) tại điểm thứ hai D. a) Chứng minh BD là tiếp tuyến của đường tròn (C). b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB, BD lần lượt tại P, Q. Chứng minh: 2 PE.QF = EF
Cho tam giác ABC có AB = 5cm, AC = 12cm, BC = 13cm.
a,Chứng minh tam giác ABC⊥ tại A và tính số đo góc B và C
b, Kẻ đường cao AH . Tính độ dài đường cao AH
c.kẻ HE⊥AB tại E ,HF ⊥ AC tại F Chứng minh AE.AB = AF.AC.
Cho tam giác ABC vuông tại A, đường cao AH. Cho biết BH=8 cm,CH=18 cm.Gọi D,E lần lượt là hình chiếu vuông góc của H trên các cạnh AB và AC . Gọi M và N lần lượt là trung điểm của HB và HC . Tính SDENM ?
Bài 1: Cho tam giác ABC vuông tại A, có đường cao AH. Đường tròn tâm (I) đường kính HB cắt AB ở D, đường tròn tâm (J) đường HC cắt AC ở E
a) CM AD.AB=AE.AC
b) CM DE là tiếp tuyến chung của (I) và (J)
Cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH và O là trung điểm cạnh BC. Đường tròn tâm I đường kính AH cắt AB,AC thứ tự tại M và N. OA và MN cắt nhau tại D.
Cho AB=3 và AC=4 .Tính bán kính đường tròn ngoại tiếp tam giác BMN
Cho biết cos alpha=1/4 thù giá trị của cotg alpha là 2)tam giác ABC vuông tại A đường cao AH. Cho biết CH=6cm và sinh= √3/2 thì độ dài đường cao là bao nhiêu? 3)tam giác ABC vuông tại A có AB=3cm và BC=5cm thì cotgB+cotgC có giá trị bằng bao nhiêu?
Cho tam giác ABC có 3 góc nhọn (AB<AC), nội tiếp (O) bán kính R. 2 đường cao BE, CF tam giác ABC cắt nhau tại H.
a, CM OA vuông góc EF.
b, Gọi K là trung điểm BC, OA cắt BC tại I, EF cắt AH tại P. CM tam giác APE đồng dạng tam giác AIB.
c, CM KH//IP.