Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ni Rika

Cho tam giác ABC có 3 góc nhọn (AB<AC), nội tiếp (O) bán kính R. 2 đường cao BE, CF tam giác ABC cắt nhau tại H.

a, CM OA vuông góc EF.

b, Gọi K là trung điểm BC, OA cắt BC tại I, EF cắt AH tại P. CM tam giác APE đồng dạng tam giác AIB.

c, CM KH//IP.

a: Kẻ tiếp tuyến Ax của (O)

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\left(1\right)\)

Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>\(\widehat{FEC}+\widehat{FBC}=180^0\)

mà \(\widehat{FEC}+\widehat{AEF}=180^0\)(hai góc kề bù)

nên \(\widehat{AEF}=\widehat{ABC}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{AEF}=\widehat{xAC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//FE

Ta có: Ax//FE

OA\(\perp\)Ax

Do đó: OA\(\perp\)FE

b: Gọi giao điểm của AI và (O) là D

Xét (O) có

AO là bán kính

AO cắt (O) tại D

Do đó: AD là đường kính của (O)

Gọi giao điểm của AH với BC là N

Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại N

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)

Xét ΔANB vuông tại N và ΔACD vuông tại C có

\(\widehat{ABN}=\widehat{ADC}\)

Do đó: ΔANB~ΔACD

=>\(\widehat{BAN}=\widehat{CAD}\)

=>\(\widehat{BAN}+\widehat{NAD}=\widehat{CAD}+\widehat{NAD}\)

=>\(\widehat{PAE}=\widehat{IAB}\)

Xét ΔAPE và ΔAIB có

\(\widehat{PAE}=\widehat{IAB}\)

\(\widehat{AEP}=\widehat{ABI}\)

Do đó: ΔAPE~ΔAIB


Các câu hỏi tương tự
gàcon
Xem chi tiết
Lục Ninh
Xem chi tiết
Hann
Xem chi tiết
Hồ Quang Hưng
Xem chi tiết
Niki Rika
Xem chi tiết
Nguyễn Huy Tú
Xem chi tiết
𝖈𝖍𝖎𝖎❀
Xem chi tiết
Nguyễn Viễn
Xem chi tiết
Trần Đức Huy
Xem chi tiết