Lời giải:
Áp dụng tính chất tia phân giác:
\(\frac{DI}{AI}=\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{BC}{AB+AC}\)
\(\Rightarrow \frac{DI}{AD}=\frac{BC}{AB+AC+BC}\)
\(\frac{EI}{BI}=\frac{AE}{AB}=\frac{EC}{BC}=\frac{AE+EC}{AB+BC}=\frac{AC}{AB+BC}\Rightarrow \frac{EI}{EB}=\frac{AC}{AB+BC+AC}\)
\(\frac{FI}{CI}=\frac{AF}{AC}=\frac{BF}{BC}=\frac{AF+BF}{AC+BC}=\frac{AB}{AC+BC}\Rightarrow \frac{FI}{FC}=\frac{AB}{AB+BC+AC}\)
Cộng 3 đẳng thức trên:
\(\frac{DI}{AD}+\frac{EI}{EB}+\frac{FI}{FC}=\frac{AB+BC+AC}{AB+BC+AC}=1\)
Ta có đpcm.