Tam giác ABC có I là giao điểm của 2 đường phân giác của góc B và C
=> AI là phân giác của góc A(1)
Mà tam giác ABC cân tại A có M là trung điểm của BC
=> AM vừa là đường trung tuyến vừa phân giác của góc A(2)
Từ (1) và (2) suy ra AI trùng AM
=> A; I; M thằng hàng.
Gọi giao điểm của BI với AC là E, giao điểm của CI và AB và F
Ta có: \(\widehat{ABE}=\widehat{EBC}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))
\(\widehat{ACF}=\widehat{BCF}=\dfrac{\widehat{ACB}}{2}\)(CF là tia phân giác của \(\widehat{ACB}\))
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABE}=\widehat{CBE}=\widehat{ACF}=\widehat{BCF}\)
Xét ΔFBC và ΔECB có
\(\widehat{FBC}=\widehat{ECB}\)(ΔABC cân tại A)
BC chung
\(\widehat{FCB}=\widehat{EBC}\)(cmt)
Do đó: ΔFBC=ΔECB(g-c-g)
Suy ra: FB=EC(hai cạnh tương ứng) và \(\widehat{BFC}=\widehat{CEB}\)(hai góc tương ứng)
hay \(\widehat{BFI}=\widehat{CEI}\)
Xét ΔFBI và ΔECI có
\(\widehat{FBI}=\widehat{ECI}\)(cmt)
FB=EC(cmt)
\(\widehat{BFI}=\widehat{CEI}\)(cmt)
Do đó: ΔFBI=ΔECI(g-c-g)
Suy ra: IB=IC(hai cạnh tương ứng)
Ta có: AB=AC(ΔBAC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: IB=IC(cmt)
nên I nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng(Đpcm)