Cho tam giác ABC có M là trung điểm của BC và tia AM là tia phân giác của góc A. Cho G là trong tâm của tam giác.
a) Chứng minh tam giác ABC cân tại A?
b) Cho AG = 4cm, BC = 16cm. Tính độ dài các đoạn thẳng AM, AB?
c) Kẻ BK vuông góc với AC tại K, BK cắt AM tại H. Chứng minh CH vuông góc với AB
Pls giúp mình mai thì rùi ạ:((
b) Ta có: G là trọng tâm của ΔBAC(gt)
mà AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
nên \(AM=\dfrac{3}{2}\cdot AG\)(Định lí)
\(\Leftrightarrow AM=\dfrac{3}{2}\cdot4=6\left(cm\right)\)
Ta có: ΔABC cân tại A(cmt)
mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)
Ta có: M là trung điểm của BC(gt)
nên \(BM=CM=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow AB^2=6^2+8^2=100\)
hay AB=10(cm)
Vậy: AM=6cm; AB=10cm
a) Xét ΔABC có:
AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
AM là đường phân giác ứng với cạnh BC(Gt)
Do đó: ΔABC cân tại A(Định lí tam giác cân)
c) Xét ΔBAC có
AM là đường cao ứng với cạnh BC(cmt)
BK là đường cao ứng với cạnh AC(gt)
AM cắt BK tại H(gt)
Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
Suy ra: CH\(\perp\)AB(Đpcm)