Bài 6: Tính chất ba đường phân giác của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Tú An

Cho tam giác ABC có M là trung điểm của BC và tia AM là tia phân giác của góc A. Cho G là trong tâm của tam giác.
a) Chứng minh tam giác ABC cân tại A?
b) Cho AG = 4cm, BC = 16cm. Tính độ dài các đoạn thẳng AM, AB?
c) Kẻ BK vuông góc với AC tại K, BK cắt AM tại H. Chứng minh CH vuông góc với AB
Pls giúp mình mai thì rùi ạ:((

Nguyễn Lê Phước Thịnh
9 tháng 5 2021 lúc 21:15

b) Ta có: G là trọng tâm của ΔBAC(gt)

mà AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

nên \(AM=\dfrac{3}{2}\cdot AG\)(Định lí)

\(\Leftrightarrow AM=\dfrac{3}{2}\cdot4=6\left(cm\right)\)

Ta có: ΔABC cân tại A(cmt)

mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

Ta có: M là trung điểm của BC(gt)

nên \(BM=CM=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AB^2=6^2+8^2=100\)

hay AB=10(cm)

Vậy: AM=6cm; AB=10cm

Nguyễn Lê Phước Thịnh
9 tháng 5 2021 lúc 21:08

a) Xét ΔABC có:

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

AM là đường phân giác ứng với cạnh BC(Gt)

Do đó: ΔABC cân tại A(Định lí tam giác cân)

Nguyễn Lê Phước Thịnh
9 tháng 5 2021 lúc 21:16

c) Xét ΔBAC có

AM là đường cao ứng với cạnh BC(cmt)

BK là đường cao ứng với cạnh AC(gt)

AM cắt BK tại H(gt)

Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)

Suy ra: CH\(\perp\)AB(Đpcm)


Các câu hỏi tương tự
Quyên Đỗ
Xem chi tiết
Khuất đại quân
Xem chi tiết
Thaoanh Lee
Xem chi tiết
Bích Diệp
Xem chi tiết
CHICKEN RB
Xem chi tiết
Nguyễn Quỳnh
Xem chi tiết
Thanh Ngọc Nguyễn
Xem chi tiết
loisee pham thi
Xem chi tiết
Lin Linie
Xem chi tiết