a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó:ΔBAM=ΔBDM
Suy ra:BA=BD
b: Xét ΔBDE vuông tại D và ΔBAC vuông tại A có
BD=BA
\(\widehat{DBE}\) chung
Do đó: ΔBDE=ΔBAC
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó:ΔBAM=ΔBDM
Suy ra:BA=BD
b: Xét ΔBDE vuông tại D và ΔBAC vuông tại A có
BD=BA
\(\widehat{DBE}\) chung
Do đó: ΔBDE=ΔBAC
Các bn giúp mik với Cho tam giác ABC cân tại A.Từ A kẻ AH vuông góc với BC tại H,trên đoạn thẳng AH lấy điểm M tùy ý(M khác A và H).Chứng minh rằng: a)H là trung điểm BC. b)MB=MC và MH là tia phân giác của góc BMC. c)MB
Cho tam giác ABC có M là trung điểm của BC và tia AM là tia phân giác của góc A. Cho G là trong tâm của tam giác.
a) Chứng minh tam giác ABC cân tại A?
b) Cho AG = 4cm, BC = 16cm. Tính độ dài các đoạn thẳng AM, AB?
c) Kẻ BK vuông góc với AC tại K, BK cắt AM tại H. Chứng minh CH vuông góc với AB
Pls giúp mình mai thì rùi ạ:((
Cho tam giác ABC. Gọi I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E và F. Chứng minh EF = BE + CF
cho tam giác ABC vuông A, AH vuông góc với BC tại H. Tia phân giác góc HAC cắt BC tại K. Các đường phân giác góc BAH, BHA cắt nhau tại O. M là trung điểm của AK. CMR: B, O, M thẳng hàng
Cho tam giác ABC có A=120, tia phân giác của góc A cắt BC tại D. Tia phân giác của góc ADC cắt AC tại I. Gọi H,K là hình chiếu của I trên đường thẳng AB,BC. Chứng minh IH=IK
Cho tam giác ABC cân tại A, D là trung điểm của BC. Gọi E và F là chân các đường vuông góc kẻ từ D đến AB và AC. Chứng minh DE = DF
Cho góc xOy nhọn. Lấy điểm A trên tia Ox, điểm B trên tia Oy. Trên tia Ox lấy điểm C sao cho BC là tia phân giác của góc ABy. Gọi I là giao điểm của hai tia phân giác góc xAB và xOy. Chứng minh ba điểm B, I, C thẳng hàng.
Cho tam giác ABC có  =120o . Tia phân giác của  cắt BC tại D. Tia phân giác của ADC ̂ cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đường thẳng AB, BC, AD. Chứng minh: a) AC là tia phân giác của DAH ̂ b) IH = IE = IK
Bài 4: Cho tam giác ABC , đường trung tuyến AM. E là một điểm thuộc tia đối của tia MA sao cho ME = AM/3. Qua B kẻ đường thẳng song song với CE, đường thẳng này cắt AM, AC lần lượt tại I và D. Chứng minh;
a) I là trọng tâm của tam giác ABC.
b) D là trung điểm của AC.