giải pt
1. \(\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt[]{x}}=1\)
2.\(\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}=\dfrac{7}{\sqrt{x-3}}\)
3.\(\sqrt{14-x}-\sqrt{x-4}\sqrt{x-1}\)
4. \(3+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\)
tính giá trị biểu thức
1) A = \(\frac{15\sqrt{x}-11}{x-2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\) tại \(x=3-2\sqrt{2}\)
2) \(B=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\) tại \(x=7-2\sqrt{6}\)
3) \(C=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\) tại \(x=7-4\sqrt{3}\)
rút gọn
\(\dfrac{9-x}{\sqrt{x}+3}-\dfrac{9-6\sqrt{x}+x}{\sqrt{x}-3}-6\) (với x>_9)
\(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)/\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\) (với x>=0, x#1)
\(\sqrt{x+12+6\sqrt{x+3}}-\sqrt{x+12-6\sqrt{x+3}}\) ( với x>_6)
\(\sqrt{m^2+6m+9}+\sqrt{m^2-6m+9}\) (m bát kì)
\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\dfrac{x+1}{\sqrt{x}}\)
\(\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}/\dfrac{\sqrt{x}-\sqrt{y}}{x-y}\)
\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)
\(\left(\dfrac{\sqrt{x}+2}{3\sqrt{x}}+\dfrac{2}{\sqrt{x}+1}-3\right)/\dfrac{2-4\sqrt{x}}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}\)
\(Q=\left(\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\right)+\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\right)\)
Rút gọn Q với x>0, x≠0, x≠9
\(Q=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+x}+\frac{8\sqrt{x}}{9x-1}\right)\div\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
a)\(\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x^2+3x+2}\)
b)\(\sqrt[3]{x+1}+\sqrt[3]{x^2}+\sqrt[3]{x}+\sqrt[3]{x^2+x}\)
c)\(\sqrt{x+3}+\dfrac{4x}{\sqrt{x+3}}=4\sqrt{x}\)
giải phương trình :a,\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+3-4\sqrt{x-1}}=1\)
b,\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
c,\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
d, \(3+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\)
\(A=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
Giải pt:
a) x=\(\sqrt{1-\dfrac{1}{x}}+\sqrt{x-\dfrac{1}{x}}\)
b) \(\sqrt{x^2+x}+\sqrt{x-x^2}=x+1\)
c) \(\sqrt{x^2-x}+\sqrt{x^2+2x}=2\sqrt{x^2}\)
d)\(\sqrt{\dfrac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
e) \(\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}\)
f) \(4x\sqrt{x+7}+3x\sqrt{7x-3}=6x^2+2\sqrt{7x^2+46x-21}\)
giải pt: \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
làm thế này mà chả hiểu sao lại bị gạch, ai biết chỉ với, cảm ơn nak:
+ ĐK:\(\left\{{}\begin{matrix}x\ge1\\x+3-4\sqrt{x-1}\ge0\\x+8-6\sqrt{x-1}\ge0\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)
+ pt đã cho \(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\) (*)
Th1: \(\left\{{}\begin{matrix}\sqrt{x-1}-2< 0\\\sqrt{x-1}-3< 0\end{matrix}\right.\)
(*) \(\Leftrightarrow2-\sqrt{x-1}+3-\sqrt{x-1}=1\Leftrightarrow2\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=2\Leftrightarrow x=5\left(N\right)\)
Th2: \(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\ge0\end{matrix}\right.\)
(*) \(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=1\Leftrightarrow2\sqrt{x-1}=6\Leftrightarrow\sqrt{x-1}=3\Leftrightarrow x=10\left(N\right)\)
Th3: \(\sqrt{x-1}-3< 0\le\sqrt{x-1}-2\)
(*) \(\Leftrightarrow\sqrt{x-1}-2+3-\sqrt{x-1}=1\Leftrightarrow1=1\left(đúng\right)\)
Kl: \(x\ge1\)