** Lần sau bạn viết đề chú ý viết đầy đủ đề.
Lời giải:
BPT $\Leftrightarrow x^2-2>1$
$\Leftrightarrow x^2>3$
$\Leftrightarrow x>\sqrt{3}$ hoặc $x< -\sqrt{3}$
Ta có: \(\sqrt{x^2-2}>1\)
\(\Leftrightarrow x^2-2>1\)
\(\Leftrightarrow x^2>3\)
hay x>9
** Lần sau bạn viết đề chú ý viết đầy đủ đề.
Lời giải:
BPT $\Leftrightarrow x^2-2>1$
$\Leftrightarrow x^2>3$
$\Leftrightarrow x>\sqrt{3}$ hoặc $x< -\sqrt{3}$
Ta có: \(\sqrt{x^2-2}>1\)
\(\Leftrightarrow x^2-2>1\)
\(\Leftrightarrow x^2>3\)
hay x>9
giải phương trình :a,\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+3-4\sqrt{x-1}}=1\)
b,\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
c,\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
d, \(3+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\)
Giải phương trình:
\(\sqrt{x+2+2\sqrt{x+1}}+\sqrt{x+10-6\sqrt{x+1}}=2\sqrt{x+2-2\sqrt{x+1}}\)
1)
2)
3)
4)
* Chứng minh đẳng thức
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-1}\) với x ≥ 2
* Trục căn thức ở mẫu
a.\(\dfrac{1}{\sqrt{5}+\sqrt{7}}\)
b.\(\dfrac{2}{5-\sqrt{2}-\sqrt{3}}\)
c.\(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}\)
Giải các phương trình sau:
a)\(\sqrt[3]{9-x}+\sqrt[3]{7+x}=4\)
b)\(\sqrt{x-1}\cdot\sqrt[4]{x^2-4}=\sqrt{x-2}\cdot\sqrt[4]{x^2-1}\)
c)\(\sqrt[4]{9-x^2}+\sqrt{x^2-1}-2\sqrt{2}=\sqrt[6]{x-3}\)
\(a,x^2-4x-6=\sqrt{2x^2-8x+12}\)
\(b,\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}=1\)
c, \(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{8-6\sqrt{x-1}+x}=1\)
d, \(\sqrt{3-x+x^2}-\sqrt{2+x-x^2=1}\)
e,\(\sqrt{4x-9}+2\sqrt{3x^2-5x+2}=\sqrt{3x-2}+\sqrt{x-1}\)
Giải phương trình:
1, \(x^2\sqrt{x}+\left(x-5\right)^2\sqrt{5-x}=11\left(\sqrt{x}+\sqrt{5-x}\right)\)
2, \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+3}=0\)
3, \(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)
4, \(\sqrt{x^2-\dfrac{1}{4x}}+\sqrt{x-\dfrac{1}{4x}}=x\)
5, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-1-20}=5\sqrt{x+1}\)
\(\sqrt{x+2+2\sqrt{x+1}}+\sqrt{x+10-6\sqrt{x+1}}=2\sqrt{x+2-2\sqrt{x+1}}\)
Giải PT:
\(2\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+1}=4\)
\(\sqrt{x}+\sqrt{x+1}=\sqrt{x\left(x+1\right)}\)
\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
Giải phương trình:
a) \(\sqrt{x}+\sqrt{x+1}+2\sqrt{x^2+x}=35-2x\)
b) \(\sqrt{x^2+x+7}+\sqrt{x^2+x+2}=\sqrt{3x^2+3x+19}\)
c) \(1-\sqrt{x+\sqrt{1+x}+1}=\sqrt{x+1}\)
d) \(2x^2+\sqrt{1-x}+2x\sqrt{1-x^2}=1\)