\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{5\sqrt{x}-2}{4-x}\)
\(=\dfrac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{5\sqrt{x}-2}{4-x}\)
\(=\dfrac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
root(5x + 2, 3) = 3 5sqrt(4x - 16) - 7/3 * sqrt(9x - 36) = 36 - 3sqrt(x - 4)
rút gọn
C=\(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right)\div\dfrac{\sqrt{x}}{x-4}vớix>0,x\ne4\)
D=\(\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x+1}}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}vớix>1,x\ne4,x\ne9\)
lm nhanhgiups mk nhé!Mk đang cần gấp!
1.cho biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}-\dfrac{1}{\sqrt{x}-2}\)với(x≥0;x≠4)
a)rút gọn A
b)tính A khi x=6+4\(\sqrt{2}\)
2.cho biểu thức P=\(\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+3\right)\)với x≥0;x≠1;x≠4
a)rút gọn P
b)tìm x để P=-4
Cho \(P=\dfrac{3x-2\sqrt{x}-4}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{2\sqrt{x}+2}{\sqrt{x}-1}\)
a, Rút gọn P.
b, Tính P khi \(x=4+2\sqrt{3}\)
c, Tìm xϵZ để PϵZ
(1/(sqrt(x) + 2) - 1/(2 - sqrt(x)) + x/(x - 4)) / (1 + 4/(sqrt(x) - 2))
chứng minh rằng
a, \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}=1\)
b, \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}=\frac{2}{\sqrt[]{x}}\)
1) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)
2)\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)đk:x>=0;x khác 4. rút gọn biểu thức A
\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)đk:x>=0;x khác 4). rút gọn biểu thức A