\(\sqrt{\dfrac{28\left(a-2\right)^2}{7}}=\sqrt{4\left(a-2\right)^2}=\sqrt{4}.\sqrt{\left(a-2\right)^2}=2\left|a-2\right|\)
\(=\sqrt{4\left(a-2\right)^2}=2\left|a-2\right|\)
\(\sqrt{\dfrac{28\left(a-2\right)^2}{7}}=\sqrt{4\left(a-2\right)^2}=\sqrt{4}.\sqrt{\left(a-2\right)^2}=2\left|a-2\right|\)
\(=\sqrt{4\left(a-2\right)^2}=2\left|a-2\right|\)
Rút gọn biểu thức
M = \(\dfrac{2}{\sqrt{7}-\sqrt{6}}-\sqrt{28}+\sqrt{54}\)
N= \(\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
Chứng minh rằng:
\(\dfrac{1}{3\left(\sqrt{2}+1\right)}+\dfrac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}+\dfrac{1}{7\left(\sqrt{4}+\sqrt{3}\right)}+...+\dfrac{1}{4021\left(\sqrt{2011}+\sqrt{2010}\right)}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2011}}\right)\)
Cho 3 số thực dương a,b,c thỏa mãn:
\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2021\)
Tìm giá trị lớn nhất của P=\(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Cho biểu thức: P= \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{3}{x-5\sqrt{x}+6}\right):\left(\dfrac{x+2}{\sqrt{x}-3}-\dfrac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)
a) Rút gọn P.
b) Tìm x để P ≤ -2.
Cho phương trình: P = \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{3}{x-5\sqrt{x}+6}\right):\left(\dfrac{x+2}{\sqrt{x}-3}-\dfrac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)
a) Rút gọn P.
b) Tìm x để P ≤ -2
8.A=\(\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)-\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
a)Rút gọn A
b)Tìm tất cả các giá trị của x để B=\(\dfrac{7}{3}\)A đạt giá trị nguyên
3.P=\(\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right)\):\(\left(\dfrac{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
a)Rút gọn P
b)Tìm những giá trị nguyên của a để P có giá trị nguyên
Cho a,b,c là cái số thực dương thỏa mãn a + b + c = 1 . Tìm giá trị nhỏ nhất của biểu thức : Q = \(\dfrac{\left(1-c\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}+\dfrac{\left(1-a\right)^2}{\sqrt{2\left(c+a\right)^2+ca}}\) + \(\dfrac{\left(1-b\right)^2}{\sqrt{2\left(a+b\right)^2+ab}}\)
cho bt A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left[\dfrac{2}{x}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right]\)
a)rút gọn bt A
b)tính giá trị của bt A khi\(x=4+2\sqrt{3}\)
c)tìm giá trị của x để bt \(\sqrt{A}\)có giá trị nỏ nhất
Cho a,b,c>0 và a+b+c=căn a +căn b +căn c=2.Tính A=
\(\left(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+b}+\dfrac{\sqrt{c}}{1+c}\right)\left(\sqrt{1+a}\right)\left(\sqrt{1+b}\right)\left(\sqrt{1+c}\right)\)