Giải phương trình:(Nhớ tìm điều kiện)
a) \(\sqrt{2x-1}=\sqrt{5}\)
b)\(\sqrt{x-5}\) = 3
c)\(\sqrt{4x^2+4x+1}=6\)
d)\(\sqrt{\left(x-3\right)^2}=3-x\)
e)\(\sqrt{2x+5}=\sqrt{1-x}\)
f)\(\sqrt{x^2-x}=\sqrt{3-x}\)
g)\(\sqrt{2x^2-3}=\sqrt{4x-3}\)
h)\(\sqrt{2x-5}=\sqrt{x-3}\)
i)\(\sqrt{x^2-x+6}=\sqrt{x^2+3}\)
Bài 1 GIẢI PHƯƠNG TRÌNH:
a) \(\sqrt{x-5}=\sqrt{3-x}\)
b) \(\sqrt{4-5x}=\sqrt{2-5x}\)
c) x2+4x+5=2\(\sqrt{2x+3}\)
d) \(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
Giải PT:
a) \(\sqrt{11+6\sqrt{2}}\) = \(\sqrt{2x^2-6x\sqrt{2}+9}\)
b) \(\sqrt{4x^2+4x\sqrt{7}+7}\) - \(\sqrt{8-2\sqrt{7}}\) = 0
c) \(\sqrt{x^2}\) = x
d) \(\sqrt{x^2-2x+1}\) = x-1
tìm giá trị nhỏ nhất của
A=\(\sqrt{\left(x+2\right)^2}+\sqrt{\left(x+3\right)^2}=5\)
B=\(\sqrt[]{x+2\sqrt{x-1}+\sqrt{x-2\sqrt{x-1}}}\)
C=\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x+\sqrt{4x-1}}\)
Giải phương trình
a,\(\dfrac{1}{x+\sqrt{1+x^2}}+\dfrac{1}{x-\sqrt{1+x^2}}=-2\)
b,\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}=\sqrt{6}\)
giải phương trình
a, \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
b, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
giải các phương trình sau:
\(\sqrt{x^2+6x+9}=3x-6\)
\(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
\(\sqrt{4-5x}=2-5x\)
\(\sqrt{4-5x}=\sqrt{2-5x}\)
1) \(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}-\left(\frac{5}{2}\sqrt{2}+12\right)\)
2) \(\frac{26}{2\sqrt{3}+5}-\frac{4}{\sqrt{3}-2}\)
3) \(\sqrt{x^2-6x+9}=2x\)
4) \(\sqrt{4x^2+1}=2x-1\)
5) \(\sqrt{x^2-4x+4}=\sqrt{x^2-2x+1}\)
giải các phương trình sau:
a) \(\sqrt{4x^2-9}=\sqrt{2x-3}\)
b) \(\sqrt{x^2-1}-\sqrt{x-1}=0\)