Ta có : \(\sqrt{16}-\sqrt{4}=4-2=2=\sqrt{4}\)
Mà \(\sqrt{16}>\sqrt{11};\sqrt{4}>\sqrt{3}\)
nên \(\sqrt{16}-\sqrt{4}>\sqrt{11}-\sqrt{3}\)
hay \(\sqrt{11}-\sqrt{3}< \sqrt{4}\)
Ta có : \(\sqrt{11}-\sqrt{3}=\left(\sqrt{11}-\sqrt{3}\right)^2=11-2\sqrt{33}+3=14-2\sqrt{33}\)
= \(14-\sqrt{132}\)
\(\sqrt{4}=\sqrt{16}-\sqrt{4}=\left(\sqrt{16}-\sqrt{4}\right)^2=16-2\sqrt{64}+4=20-\sqrt{256}\)
Dễ thấy : \(14< 20và132< 256\)
=> \(14-\sqrt{132}< 20-\sqrt{256}\)
hay : \(\sqrt{11}-\sqrt{3}< \sqrt{4}\)