\(\sqrt{\dfrac{1}{104}}=\dfrac{\sqrt{26}}{52}\)
\(\sqrt{\dfrac{1}{104}}=\dfrac{\sqrt{26}}{52}\)
a,\(\sqrt{1}+\sqrt{9}+\sqrt{25}+\sqrt{49}+\sqrt{81}\) c\(\sqrt{0,04}+\sqrt{0,09}+\sqrt{0,16}\)
b,\(\sqrt{\dfrac{1}{4}}+\sqrt{\dfrac{1}{9}}+\sqrt{\dfrac{1}{36}}+\sqrt{\dfrac{1}{16}}\) e\(\sqrt{2^2}+\sqrt{4^2}+\sqrt{\left(-6^2\right)}+\sqrt{\left(-8^2\right)}\)
j,\(\sqrt{1,44}-\sqrt{1,69}+\sqrt{1,96}\)
g, \(\sqrt{\dfrac{4}{25}}+\sqrt{\dfrac{25}{4}}+\sqrt{\dfrac{81}{100}}+\sqrt{\dfrac{9}{16}}\)
d\(\sqrt{81}-\sqrt{64}+\sqrt{49}\)
10. CMR:
\(\sqrt{\text{1+2+3+...+(n−1)+n+(n−1)+...+3+2+1 }}\) = n
Bài 1 : So sánh \(\dfrac{-\sqrt{10}}{2}và-2\sqrt{5}\)
1) Chứng minh rằng : \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\)
2) Tìm x,y để : \(C=-18-\left|2x-6\right|-\left|3y+9\right|\)đạt giá trị lớn nhất .
Helppp Meeee!!! Mơn trc ạ !!! <3
\(\sqrt{x}-1=10\)
\(\sqrt{X}-1=10\)
giúp mình với
1, tính
a, \(7\times\sqrt{\dfrac{6^2}{7^2}}-\sqrt{25}+\sqrt{\dfrac{\left(-3\right)^2}{2}}\)
b, \(-\sqrt{\dfrac{64}{49}}-\dfrac{3}{5}\times\sqrt{\dfrac{25}{64}}+\sqrt{0,25}\)
c, \(\sqrt{\dfrac{10000}{5}}-\dfrac{1}{4}.\sqrt{\dfrac{16}{9}}+\sqrt{\dfrac{\left(-3\right)^2}{\left(4\right)}}\)
d, \(\left|\dfrac{1}{4}-\sqrt{0,0144}\right|-\dfrac{3}{2}+\sqrt{\dfrac{81}{169}}\)
bài 1: tính
a) 3/4+(-5/2)+(-3/5)
b) \(\sqrt{\left(7\right)^2}+\sqrt{\dfrac{25}{16}-\dfrac{3}{2}}\)
c)\(\dfrac{1}{2}.\sqrt{100}-\sqrt{\dfrac{1}{16}+\left(\dfrac{1}{3}\right)^0}\)
Tính hợp lí
A=\(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)