Đặt \(\left\{{}\begin{matrix}x=a\\3-x=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\a^2+b^2\ge5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2+b^2=9-2ab\\a^2+b^2\ge5\end{matrix}\right.\) \(\Rightarrow ab\le2\)
\(P=a^4+b^4+6a^2b^2=\left(a^2+b^2\right)^2+4a^2b^2\)
\(P=\left(9-2ab\right)^2+4a^2b^2=8a^2b^2-36ab+81\)
\(P=4\left(2a^2b^2-9ab+10\right)+41=4\left(2ab-5\right)\left(ab-2\right)+41\ge41\)
\(P_{min}=41\) khi \(ab=2\)