a/ \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\Leftrightarrow2^{300}< 3^{200}\)
a)\(2^{300}\) và\(3^{200}\)
ta có :
\(2^{300}=2^{3\cdot100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2\cdot100}=\left(3^2\right)^{100}=9^{100}\)
Vì 8<9\(\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)(đpcm)