\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}=1-\frac{1}{2009}+1-\frac{1}{2010}+1-\frac{1}{2011}+1+\frac{3}{2008}=1+1+1+1+\frac{1}{2008}+\frac{1}{2008}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}=4+\left(\frac{1}{2008}-\frac{1}{2009}\right)+\left(\frac{1}{2008}-\frac{1}{2010}\right)+\left(\frac{1}{2008}-\frac{1}{2011}\right)\left(vì:2008>2009>2010>2011\right)\Rightarrow\frac{1}{2008}>\frac{1}{2009}>\frac{1}{2010}>\frac{1}{2011}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2008}-\frac{1}{2009}>0\\\frac{1}{2008}-\frac{1}{2010}>0\\\frac{1}{2008}-\frac{1}{2011}>0\end{matrix}\right.\Rightarrow4+\left(\frac{1}{2008}-\frac{1}{2009}\right)+\left(\frac{1}{2008}-\frac{1}{2010}\right)+\left(\frac{1}{2008}-\frac{1}{2011}\right)>4+0+0+0=4\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}>4\)