CMR nếu \(\left(a^2-bc\right).\left(b-abc\right)=\left(b^2-ac\right).\left(a-abc\right)\) và các số a, b, c, a-b khác 0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
câu 1: GTNN của b/thức : Q =a^2 + 4b^2 -10a là:
câu 2: hình vuông ABCD có CD 3 căn bậc 2 của 2.khi đó độ dài của đường chéo hình vuông là?
câu 3 :nếu 1/a-1=1 và a,b là số thực khác 0 và 2a+ 3ab -2b khác 0 .GT của b/thức P=(a-2ab-b)/2a+3ab-b là ?
c/m nếu
(a-b)2+(b-c)2+(c-a)2=(a+b-2c)2+(b+c-2a)2+(c+a-2b)2thì a=b=c
Chứng minh rằng: Nếu \(\left(a+b+c\right)^2=3.\left(a^2+b^2+c^2\right)\) thì a=b=c
Chứng minh rằng nếu a.b.c=a+b+c và 1/a+1/b+1/c=2 thì 1/a^2+1/b^2+1/c^2=2
CMR: a= b= c . Nếu,
a, 2( a2 + b2 + c2 ) = ab + bc + ca
b,2 ( a2 + b2 + c2 ) - 2( ab + bc + ca ) = 0
c, ( a + b + c )2 = 3( ab + bc + ca )
nếu 1 và 2 là 2 nghiệm của f(x)=x^3+ax^2+bx+c và a+b= -16 thì a có giá trị là
Cho a+b+c=1 và a^2+b^2+c^2=1
A. Nếu x/a=y/b=c/z. Chứng minh Rằng xy+yz+zx=0
B. Nếu a^3+b^3+c^3=1. Tính giá trị của a,b,c
CMR: Nếu: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\) thì: \(\dfrac{x^{2021}+y^{2021}+z^{2021}}{a^{2021}+b^{2021}+c^{2021}}=\dfrac{x^{2021}}{a^{2021}}+\dfrac{y^{2021}}{b^{2021}}+\dfrac{z^{2021}}{c^{2021}}\)