Ta có : \(\left(100^{99}+99^{99}\right)^{100}>\left(100^{99}+99^{99}\right)^{99}\times100^{99}=\left(100^{100}+100\times99^{99}\right)^{99}>\left(100^{100}+99^{100}\right)^{99}\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
Ta có : \(\left(100^{99}+99^{99}\right)^{100}>\left(100^{99}+99^{99}\right)^{99}\times100^{99}=\left(100^{100}+100\times99^{99}\right)^{99}>\left(100^{100}+99^{100}\right)^{99}\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
Tính Nhanh
\(\frac{\left(1+2+3+...+99+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
cho A= 1/2 2/2^2 3/2^3 .... 99/2^99 100/2^100 so sánh A với 2
tính:
\(\left(\dfrac{1}{10}-1\right).\left(\dfrac{1}{11}-1\right).\left(\dfrac{1}{12}-1\right)...\left(\dfrac{1}{99}-1\right)\left(\dfrac{1}{100}-1\right)\)
\(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+.+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}.\)So sánh A với 2
tính:\(C=\left(1-\dfrac{1}{2^2}\right)\left(\dfrac{1}{3^2}-1\right)\left(1-\dfrac{1}{4^2}\right)\left(\dfrac{1}{5^2}-1\right)...\left(\dfrac{1}{99^2}-1\right)\left(1-\dfrac{1}{100^2}\right)\)
1. So sánh A và B
A= 20082007 +1/ 20082008 + 1
B= 20082007 + 1/ 20082008 +1
2. So sánh M và N
M= 100100 + 1/ 10099 +1
N= 100101 +1/ 100100+1
3. Cm:
B= 5^2008 +5^2007 +5^2006 chia hết cho 31.
C= 8^8 +2^20 chia hết cho 17.
D= 313^5 . 299- 313^6 . 36 chia hết cho 7
BT: Rút gọn: \(A=\dfrac{\left(1+2+3+...+99+100\right)\times\left(\dfrac{1}{4}+\dfrac{1}{6}-\dfrac{1}{2}\right)\times\left(63\times1.2-21\times3,6+1\right)}{1-2+3-4+5-6+...+99-100}\)
Giúp mình với mình cần gấp!!! Tối mai mình học rồi!!! Cảm ơn các bạn nhiều!!!
Rút gọn:
A = \(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
B = \(3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
Rút gọn :
a) A = 2100 - 299 + 298 - 297 +.....+ 22 - 2
b) B = 3100 - 399 + 398 - 397 +.....+ 32 - 3 + 1