a) Vì A=\(\dfrac{15^{16}+1}{15^{17}+1}\) < 1
\(\Rightarrow\dfrac{15^{16}+1}{15^{17}+1}< \dfrac{15^{16}+1+14}{15^{17}+1+14}=\dfrac{15^{16}+15}{15^{17}+15}\) \(=\dfrac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}\) \(=\dfrac{15^{15}+1}{15^{16}+1}\)
Vậy A<B
b) A=\(\dfrac{2006^{2007}+1}{2006^{2006}+1}>1\)
\(\Rightarrow\dfrac{2006^{2007}+1+2005}{2006^{2006}+1+2005}\)
= \(\dfrac{2006^{2007}+2006}{2006^{2006}+2006}\)
= \(\dfrac{2006\left(2006^{2006}+1\right)}{2006\left(2006^{2005}+1\right)}\)
= \(\dfrac{2006^{2006+1}}{2006^{2005}+1}\)
Vậy A>B
a, \(A=\dfrac{15^{16}+1}{15^{17}+1}\) và \(B=\dfrac{15^{15}+1}{15^{16}+1}\)
A = \(\dfrac{15^{16}+1}{15^{17}+1}< 1\)
Vì A = \(\dfrac{15^{16}+1}{15^{17}+1}< \dfrac{15^{16}+1+14}{15^{17}+1+14}=\dfrac{15^{16}+15}{15^{17}+15}=\) \(\dfrac{15.\left(15^{15}+1\right)}{15.\left(15^{16}+1\right)}=\dfrac{15^{15}+1}{15^{16}+1}=B\)