b, Ta có: \(\dfrac{58}{53}>1>\dfrac{36}{55}\)
hay \(\dfrac{58}{53}>\dfrac{36}{55}\)
\(\Rightarrow0-\dfrac{58}{53}< 0-\dfrac{36}{55}\)
\(\Rightarrow\dfrac{-58}{53}< \dfrac{-36}{55}\)
b, Ta có: \(\dfrac{58}{53}>1>\dfrac{36}{55}\)
hay \(\dfrac{58}{53}>\dfrac{36}{55}\)
\(\Rightarrow0-\dfrac{58}{53}< 0-\dfrac{36}{55}\)
\(\Rightarrow\dfrac{-58}{53}< \dfrac{-36}{55}\)
Chứng minh :
A =\(\dfrac{1}{2}+\dfrac{1}{33}+\dfrac{1}{34}+\dfrac{1}{35}+\dfrac{1}{51}+\dfrac{1}{53}+\dfrac{1}{55}+\dfrac{1}{57}+\dfrac{1}{59}\)<\(\dfrac{7}{10}\)
So sánh A và B :
\(A=1.3.5.7.....99\)
\(B=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.....\dfrac{100}{2}\)
So sánh:
\(\dfrac{13}{19};\dfrac{47}{53}\)
Tính :
a, \(\dfrac{3\cdot13-13\cdot18}{15\cdot40-80}\);
b, \(\dfrac{18\cdot34+\left(-18\right)\cdot124}{-36\cdot17+9\cdot\left(-52\right)}\);
c, \(\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}+\dfrac{-0,25\cdot\dfrac{-2}{3}-0,75:\left(\dfrac{-1}{2}+\dfrac{2}{3}\right)}{\left|-1\dfrac{1}{2}\right|\cdot\left(\dfrac{-2}{3}-75\%:\dfrac{3}{-2}\right)}\).
Thực hiện phép tính một cách hợp lý :
a) \(\dfrac{-12}{7}\) . \(\dfrac{4}{35}\) + \(\dfrac{12}{7}\) . \(\dfrac{-31}{35}\) - \(\dfrac{2}{7}\)
b) 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 97 + 98 - 99 - 100.
c) A = 157 . ( - 37 ) - ( 41 . 53 - 37 . 157 ) + 51 . 53
d) B = \(\left(\dfrac{1}{11}+\dfrac{1}{21}+\dfrac{1}{31}+\dfrac{1}{41}+\dfrac{1}{51}\right)\) \(\left(\dfrac{-41}{123}+\dfrac{31}{-186}-\dfrac{-51}{102}\right)\)
so sanh
M=\(\left(\dfrac{1}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)va \(\dfrac{1}{2}\)
B=\(\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}va\dfrac{9}{10}\)
C=\(\dfrac{10}{17}+\dfrac{8}{15}+\dfrac{11}{16}va2\)
So sánh :
a) \(\dfrac{11}{32}\) và \(\dfrac{16}{49}\)
b) \(\dfrac{n+1}{n+2}\) và \(\dfrac{n}{n+3}\)
c) \(\dfrac{53}{57}\) và \(\dfrac{531}{571}\)
\(\dfrac{31}{2}\cdot\dfrac{32}{2}...\dfrac{60}{2}=1.3.5...59\)
SO SÁNH A VÀ B
A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
B=\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}\)