\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Ta có 8192 > 3125
Nên \(8125^7>3125^7\)
Vậy : \(2^{91}>5^{35}\)
Ta có
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\) ( 8192 > 3125 ) nên \(2^{91}>5^{35}\)
Vậy \(2^{91}>5^{35}\)