Ta có : \(9^{29}< 9^{30}=9^{2.15}=\left(9^2\right)^{15}=81^{15}\)
Vì \(101^{15}>81^{15}\)
\(\Rightarrow101^{15}>9^{30}\)
\(\Rightarrow101^{15}>9^{29}\)
Vậy \(101^{15}>9^{29}\)
Ta có :
929 < 930
Mà 930 = (92)15 = 8115 < 10115
⇒ 10115 > 929
\(101^{15}=101^{3^5}=303^5=101^5.3^5\)
\(9^{29}=3^{2^{29}}=3^{58}=3^{50}.3^5.3^3=3^{10^5}.3^5.3^3=59049^5.3^5.3^3\)
\(101^5< 59049^5\)
\(3^5=3^5\)
\(\Rightarrow101^{15}< 9^{29}\)